
An Effective PSO-based Node Localization Scheme 
for Wireless Sensor Networks 

 
 

Po-Jen Chuang and Cheng-Pei Wu 
Department of Electrical Engineering 

Tamkang University 
Tamsui, Taipei County 
Taiwan 25137, R. O. C. 

E-mail: pjchuang@ee.tku.edu.tw 
 
 

 
Abstract 

 
Wireless sensor networks (WSNs) usually employ 

different ranging techniques to measure the distance 
between an unknown node and its neighboring anchor 
nodes, and based on the measured distance to estimate 
the position of the unknown node. This paper presents 
an effective Particle Swarm Optimization (PSO)-based 
Localization Scheme using the Radio Signal Strength 
(RSS) ranging technique. Modified from the iterative 
multilateration algorithm, our scheme is unique in 
adopting the location data of remote anchors provided 
by the closest neighbor anchors of an unknown node to 
estimate the unknown node’s position and using the 
PSO algorithm to further reduce error accumulation. 
The new scheme meanwhile takes in a modified DV-
distance approach to raise the success ratios of 
locating unknown nodes. Compared with related 
schemes, our scheme is shown through simulations to 
perform constantly better in increasing localization 
success ratios and decreasing location errors -- at 
reduced cost. 

  
 

1. Introduction 
 

Current node localization algorithms for the 
wireless sensor networks (WSNs) can be categorized 
as range-free and range-based. Involving no ranging 
techniques, range-free algorithms mainly use 
connectivity among the anchor nodes to estimate the 
positions of unknown nodes. Range-based algorithms 
will employ such ranging techniques [1] as Time of 
Arrival (TOA), Time Difference of Arrival (TDOA), 
Angle of Arrival (AOA) or Radio Signal Strength 
(RSS) to measure the distance (or angles) between an 

unknown node and its neighboring anchor nodes, and 
based on the measured distance to estimate the position 
of the unknown node.   Among these ranging 
techniques, RSS stands as a more practical and 
appropriate alternative. In a wireless environment, it is 
desirable to involve RSS to measure the distances 
between nodes so as to locate unknown nodes – 
because requiring no additional equipments, RSS will 
be more conserving in hardware cost and power 
consumption. However, there is one apparent weakness 
for applying RSS to a sensor network: It is highly 
sensitive to uncertain environmental elements, such as 
obstacles, noises and others, and is therefore likely to 
generate larger errors than the other ranging 
techniques. 

The RSS localization schemes usually use 
trilateration or multilateration algorithms to obtain the 
range information and following the obtained range 
measurement to calculate the position of an unknown 
node. Some algorithms involve iterative multilateration 
to reduce the needed density (number) of anchor nodes 
in the network in order to trim down the hardware cost. 
Iterative multilateration tends to cause two problems: 
(1) Without enough anchor nodes, the positions of 
some unknown nodes will be inestimable and (2) the 
iterative process is likely to generate error 
accumulation. To solve the problems, some make use 
of collaborative multilateration [2], which nonetheless 
needs to guarantee anchor nodes are located at the edge 
of the network.  

The main goal of this research is to construct an 
effective new node localization scheme which adopts 
RSS as its ranging technique and is able to reduce error 
accumulation and the number of unknown nodes (i.e., 
raise the localization success ratios) for the wireless 
sensor networks. The proposed Particle Swarm 
Optimization (PSO)-based Localization Scheme, a 
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modified design of the iterative multilateration, 
determines the estimated position of an unknown node 
using the location data of remote anchors provided by 
the closest neighbor anchors of the unknown node to 
decrease accumulative errors. In raising up the 
estimation accuracy, our new scheme adopts the PSO 
algorithm [3,4] to obtain better calculation and as a 
result fewer estimation errors during the localization 
process. Our scheme meanwhile employs an approach 
similar to the DV-distance [5] to help unknown nodes 
with insufficient anchor nodes find their positions, 
further increasing the success ratios of localization. 
Experimental evaluation is conducted to examine the 
performance of our new scheme and other related 
localization schemes. The collected results show that 
when compared with related schemes, our PSO-based 
scheme requires a smaller number of anchor nodes 
(i.e., less hardware cost) but performs constantly better 
in cutting back location errors and increasing node 
localization success ratios for WSNs. 
 
2. Existing node localization schemes 
 

The Ecolocation Algorithm [6] first divides a given 
known area into several network grids and lets an 
unknown node in the network sends out a localization 
message. Multiple anchor nodes then record their RSS 
values for this message and determine the ordered 
sequence of the anchor nodes from high values to low 
values. The Ecolocation Algorithm goes on to scan the 
grids for a location which holds an ordered sequence of 
anchor nodes matching the measured sequence most 
correctly. The obtained location is then taken as the 
position of the unknown node.  

The AHLoS Algorithm [2] is a typical example of 
using the signal fading model [6,7] to estimate the 
locations of unknown nodes. The algorithm involves 
two ranging techniques TDOA and RSS, and compares 
the accuracies of these two techniques to get the 
desired location. (Note that RSS may produce lower 
localization accuracy than TDOA when under the 
influence of interferences. TDOA however has its 
limits: It functions only within shorter transmission 
ranges and in order to attain the desired localization 
accuracy, both the signal transmitter and receiver must 
stay in the LOS (Line Of Sight) situation.) The AHLos 
system provides three localization styles, the atomic, 
iterative and collaborative multilaterations. A 
traditional multilateration localization algorithm, the 
atomic multilateration uses multiple neighbor nodes 
with known locations to find the position of an 
unknown node. The iterative multilateration applies the 
atomic multilateration in an iterative manner to locate 
the unknown nodes: An unknown node will become an 

updated anchor node after successfully obtaining its 
location and the iterative process will go on until all 
unknown nodes find their locations. The collaborative 
multilateration first studies the collaborative location 
messages and the network topology with several 
anchor nodes and unknown nodes in it, and describes 
such information as an over-constrained or well-
constrained set of quadratic equations with a unique 
solution.  

As can be observed, AHLos can locate the 
positions of unknown nodes with a small amount of 
anchor nodes. In its iterative process, however, when 
an unknown node successfully obtains its estimated 
location, becomes an updated anchor node and 
broadcasts its location to the neighborhood, the 
location error resulting from measurement inaccuracy 
is also propagated to the neighbor nodes. Through such 
an iterative process, errors will accumulate and grow 
around the neighborhood. For improvement, the 
authors of AHLoS later develop an n-hop 
multilateration localization algorithm [8] to amend the 
two major weak points of AHLoS: The accumulation 
of errors and the iterative process being sensitive to the 
anchor node density. The n-hop multilateration 
algorithm uses collaborative multilateration to 
establish subgraphs which include both the anchors 
and unknown nodes and can be written as over-
constrained or well-constrained sets of quadratic 
equations with a unique solution. The algorithm then 
uses the Kalman Filter to solve these equations and 
obtain the estimated locations of the unknown nodes. 
This n-hop algorithm faces one problem: It must 
intentionally deploy some of the anchor nodes to the 
edge of the network to get complete constrained 
quadratic equations.  

The Generic Localized Algorithm in [9] also aims 
to reduce error accumulation. To reduce the 
accumulation of estimation errors, the algorithm sets 
constraints for unknown nodes to become updated 
anchor nodes after obtaining their estimated locations. 
For the algorithm, an unknown node with less than 
three neighbor nodes within its transmission range will 
be determined as an orphan node, updated anchor 
nodes will be configured as gotFinal, and adjacent 
nodes will exchange data to get sufficient location 
messages. If an unknown node has less than three non-
orphan neighbor nodes after the data exchange process, 
it will be taken as an orphan node and unable to locate 
its position. By contrast, if an unknown node has more 
than three “gotFinal” neighbors, it will randomly 
choose three of them to estimate its location. Such an 
algorithm apparently involves a good deal of 
calculation and communication cost. 

Observing the above RSS node localization 
schemes, we realize that node localization accuracy in 

188



wireless environments is subject to the influence of 
certain factors, including the topology of the network, 
the numbers and positions of anchor nodes, and 
external environmental impacts (such as noises, 
obstacles and so on). Taking these factors into 
consideration, this paper comes up with a new and 
effective localization scheme which is modified from 
the iterative multilateration and is called the PSO-
based Node Localization Scheme. The PSO-based 
scheme can reduce both the accumulative errors and 
location errors as it determines the estimated position 
of an unknown node using the location data of remote 
original anchors provided by its closest neighbor 
anchors and also using the PSO algorithm. Besides, to 
increase the success ratios of localization, our new 
scheme chooses to use an approach similar to the DV-
distance Algorithm to help unknown nodes which can 
not conveniently obtain sufficient location messages 
search and find their locations. 

 
3. The Particle Swarm Optimization (PSO) 

 
A form of evolutionary computation established 

mainly on community wisdom, the PSO can produce 
inestimable group behaviors through individual 
interaction rules [3,4]. In its implementation, each 
particle stands for an independent search and takes the 
fitness value of the initial solution – which is randomly 
generated at the initial stage – as its optimal fitness 
value. When finding a better fitness value in any future 
generation (of the optimization process), a particle will 
update its original value into this new value and store 
this new optimal fitness value. Thus a particle will 
always record its up-to-date best fitness value in 
memory and go on to search for a potential better value 
based on the recorded information. For the particles of 
a group, such a searching and optimizing behavior is 
the performance of the cognition-only model.  

Besides the cognition-only model, PSO also 
involves a social-only model. In performance of the 
social-only model, a particle will compare its current 
best fitness value with the group best fitness value to 
revise and update the latter value in each search. Each 
particle in the group then follows this revised new 
group value to modify its search velocity in the next 
searching generation. Thus generations after 
generations, the repeated optimization searches 
engaged by the particle swarm will eventually produce 
a best group solution for the optimization problem 
under pursuit. 

In our proposed localization scheme, we adopt a 
kind of weighted PSO which assumes the velocity of 
the particles has the inertia weight renewal [10, 11]. 
The advantage of bringing the inertia weight velocity 

to the search process is to find the best solution fast 
and stably. In the search process, the PSO first 
randomly generates a set of particles in the initial 
search stage and moves on to pursue the best solution 
for the target problem through the iterative 
optimization process. At each optimization attempt, a 
particle will change its searching direction based on 
two values: Pibest (the particle i’s present best fitness 
value) and Pgbest (the group’s current best solution 
resulting from the swarm’s collective optimization 
memory). During the search process, each particle will 
update its searching speed and position according to 
the following two functions [11]: 

 
     vi(t+1)=w．vi(t)+c1．rand()．(Pibest(t)-xi(t))+ 
                   c2．rand()．(Pgbest(t)-xi(t)) 
     xi(t+1)=xi(t)+vi(t) 
 

In the functions,  
t is the iterative step, 
vi(t) and xi(t) each represents the velocity and position 
of particle i at step t,  
Pibest(t) is the best fitness value of particle i at step t,  
Pgbest(t) is the best fitness value of the group at step t,  
vi(t+1) is the velocity of particle i at step t+1,  
xi(t+1) is the position of particle i at step t+1,   
rand() is a random number between 0 and 1,  
c1 and c2 are constants which are set to 2, and  
w is the inertia weight between 0.1 and 0.5. 
 
4. The Proposed Localization Scheme 
 
4.1. The localization process 
 

As mentioned in Section 2, our localization scheme 
estimates and decides the location of an unknown node 
using the location data of remote anchors provided by 
its closest neighbor anchors. Our new scheme includes 
two modes, MODE 1 and MODE 2. After obtaining 
the number of existing neighbor nodes, an unknown 
node will follow either of the modes to get its location. 

MODE 1: The unknown node has sufficient (three 
original or updated) neighboring anchors to estimate its 
position. 

MODE 2: The unknown node has insufficient 
neighboring anchors to estimate its position. 

Initially, each anchor node will broadcast its ID and 
coordinate to the network and check if any updated 
anchor nodes (i.e., unknown-becoming-anchor nodes) 
emerges in its neighborhood. If any, the anchor node 
needs to send out its information to this updated anchor 
node. When an unknown node discovers three or more 
(original or updated) anchor nodes in its neighborhood, 
it will enter MODE 1 and use both the radio strength 
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measurements and location messages of the neighbor 
anchors to estimate its location. An unknown node 
successfully gets its estimated location then becomes 
an updated anchor node and will broadcast its 
estimated location along with the recorded location 
data of its neighboring anchor nodes to the network.  

On the other hand, if an unknown node fails to find 
sufficient anchor neighbors to help locate itself, it will 
enter MODE 2 to find its position. In MODE 2, an 
unknown node with less than three anchor neighbors 
can bring in remote anchor nodes (not updated 
anchors) to help estimate its coordinate. Recall that the 
unknown nodes which update themselves into anchor 
nodes will record their coordinates and the coordinates 
of their neighbor anchors in memory. An unknown 
node with one or two anchors in MODE 2 can thus 
discover its location using such location data 
(including the data of anchor nodes several hops 
away). Note that in MODE 2 of our scheme, an 
unknown node with insufficient anchor neighbors can 
still estimate its location by using the location data of 
remote anchors provided by closest neighbor anchors 
of the unknown node. In other words, by performing 
MODE 2 of our new scheme, we can help orphan 
nodes (unknown nodes with less than three anchor 
neighbors) locate their positions. This is indeed an 
important contribution other localization schemes fail 
to reach.  

MODE 2 of our scheme actually performs in a way 
similar to the DV-distance Algorithm [5], except that it 
takes the direct (or shortest) distance between the 
closest anchor neighbor and the remote original 
anchor. For better illustration, an example of 
performing MODE 2 is given in Figure 1, where nodes 
A and E are the original anchor nodes, nodes B, C and 
D are the updated anchor nodes and node U is the 
unknown node. Under the DV-distance algorithm, U 
will collect coordinates and distances from A and E, 
and the distance between U and E will be an 
accumulation of DECDBCUB +++ . (With the DV-
distance, Node U will never compute its location in 
this case because it has only two original anchor 
neighbors A and E.) While under MODE 2 of our 
scheme, node B – which is an updated anchor –will 
record the location data of anchor node E and can thus 
compute the distance between itself and E directly 
(indicated by the dotted line in the figure), without 
detouring by C and D. In calculating the location of U, 
such a design reduces not only the ranging distance but 
also the probability of error accumulation (because 
anchor node E can provide a more accurate location 
coordinate than updated anchor nodes C and D). Thus 
under the PSO algorithm in MODE 2 of our scheme, 
node U will eventually get its estimated location based 

only on the location messages of nodes A, B and E 
(leaving out C and D). 

 
Figure 1. An example of performing MODE 2 in 

our scheme. 
 
Note that in order to reduce the communication 

cost, our new localization scheme lets an unknown 
node broadcast the location data of itself and its 
neighbor anchors only after it is updated into an anchor 
node.  
 
4.2. Application of the PSO algorithm 
 

As stated, the localization process of our scheme 
employs the PSO algorithm to optimize and obtain the 
locations of the unknown nodes. An unknown node 
will start performing the PSO algorithm to search its 
location after collecting three or more location 
messages from the neighboring anchor nodes. Assume 
that unknown node u will engage the PSO algorithm to 
estimate its coordinate (xu, yu), and Ri is the inexact 
ranging distance between u and its neighbor anchor 
node i. If the difference between the real location and 
estimated location of u (calculated from i) is described 
as an error equation ei, ei can be written as: 
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If node u has n neighbor anchor nodes, the above 
error equation will become  
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To discover the estimated location (xu, yu), node u 
will randomly generate k particles (i.e., k random 
coordinates) as the initial population. Each of the k 
particles will compute the error value from the error 
equation and apply the PSO algorithm to attain the 
group best value, Pgbest, which is to be taken as the 
estimated location of u. To reduce the location error 
accumulation resulting from the iterative process of 
multilateration (when the ranging distances are 
inaccurate), we adjust the error equation as follows: 
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In Equation (3), n is the number of neighbor anchor 
nodes, m is the particles from 1 to k and Ri is the 
ranging distance of the anchor nodes. During the 
search process, each particle will compute and find the 
smallest fitness value according to the coordinates and 
distances of its neighbor anchor nodes. That is, each 
particle, say i, will calculate its Pibest depending on the 
condition of its neighborhood. The PSO algorithm 
actually involves calculation occurring in both the 
local (Pibest) and global (Pgbest) neighborhoods. The 
local neighborhood contains only the particle itself. In 
the global neighborhood, however, the fitness values of 
all particles will be considered and compared to attain 
the Pgbest and this iterative searching process will repeat 
until the convergence is reached. In this paper, our new 
localization algorithm will stop the searching process 
when the error between all particles drops below 410 − , 
to avoid entering local optimum.  

Note that when computing the error equation to get 
the best fitness value, a particle has to divide the error 
by the ranging distance between the corresponding 
anchor node and itself, and takes the result as the 
weighted value. Using such a weighted value will 
constrain the estimated location of an unknown node 
into the vicinity of the real location (i.e., help bring the 
estimated location closer to the real location). Even 
with inaccurate ranging data, we can still use the 
shortest distance to constrain the estimated locations 
and hence to reduce location errors. 

Figure 2 illustrates how an unknown node locates 
its position under the PSO algorithm. In this example, 
unknown node U gets four anchor nodes A1, A2, A3 
and A4 within its communication range and holds the 
rough RSS distance measurements between itself and 
the four anchor nodes, R1 = 10, R2 = 2, R3 = 3 and R4 = 
10. After obtaining these measurements, node U begins 
to search its position using the PSO algorithm. It first 
randomly generates k particles in the search space, 
records their coordinates and then uses Equation (3) to 
compute the error value of each particle. For example, 
the error value of a specific particle, say k, will be 
calculated as follows: 

 
    ek=(R1- 22 )()( kA1kA1 yyxx −+− ) 2 /R1+ 

         (R2- 22 )()( kA2kA2 yyxx −+− ) 2 /R2+ 

         (R3- 2
3

2
3 )()( kAkA yyxx −+− ) 2 /R3+ 

         (R4- 2
4

2
4 )()( kAkA yyxx −+− ) 2 /R4 

 
After the error values of all k particles are obtained, 

the particle with the smallest error value will be taken 
as the candidate who sits nearest to the real position of 
node U and selected as the local best solution in this 

generation. The same searching process repeats 
generations after generations to search for a more 
precise location of node U until reaching convergence. 
In Figure 3, the blue dot stands for the final estimated 
position of node U. However, if we employ LSE (Least 
Square Estimation) to calculate the position of the 
unknown node, we will find obvious location error 
because of the distinct difference between the 
estimated location and the actual location of the 
unknown node which results from the very imprecise 
distance measurements. 

 
Figure 2. A localization example under the PSO 

algorithm. 
 

5. Performance Evaluation 
 
5.1. The simulation model 

 
Simulation runs using the Matlab are carried out to 

evaluate and compare the performance of our new 
scheme and other localization schemes including the 
Iterative Multilateration (of AHLoS), the DV-distance 
Algorithm and the Ecolocation Algorithm. Excluded 
from performance comparison with our scheme is the 
n-hop mulitilateration localization algorithm which 
needs to deploy some anchor nodes to the edge of the 
network in order to get desirable localization – unlike 
our scheme which randomly distributes all sensor 
nodes to the network. The genetic localization 
algorithm is also left out because it is similar to the 
iterative multilateration of the AHLoS system.  

Simulation runs are conducted mainly in a 50m×

50m wireless sensor environment, except those to 
evaluate the performance of our MODE 2 which are 
engaged in an extended area of 80m×80m with an 
maximum transmission range of 20m. Our simulation 
adopts the RF fading model and each collected result is 
the averaged value over 10 runs. Table 1 lists some 
typical values used in the simulation. 
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Table 1. Typical values of simulation parameters 
 

Parameters Typical values 
The network scale 100 

Transmission range R 25m (Simulations 
5.2.1 – 5.2.4) 

Transmission power PT 
(dBm） 

0 dBm 

Path loss exponent α 4 
PL(d0) -55 dB  (d0=1m) 

Standard deviation σ 2-15 
Number of particles k 10 

Unit distance of the grid 
(Ecolocation) 

0.5m 

 
5.2. The simulation results 
 
5.2.1. The numbers of RSS samples vs. location 
errors. Figure 3 gives the numbers of RSS samples vs. 
location errors for the four schemes, including ours 
which is plotted as PSO. This simulation takes 10% of 
the deployed nodes as the anchor nodes. The result 
shows that due to accumulated distances, the DV-
distance Algorithm produces increasing location errors 
regardless of the number of RSS samples. The result 
for the Ecolocation Algorithm manifests that the 
algorithm needs a large number of anchor nodes to 
attain good performance; thus when the number of 
anchor nodes decreases, so does its performance. 
Among the four schemes, the Iterative Multilateration 
and our PSO scheme are shown to produce more 
accurate results even under the increased number of 
RSS samples. Our scheme actually generates the 
smallest location errors thanks to its using the location 
data of remote anchors provided by the closest 
neighbor anchors of an unknown node and meanwhile 
using the PSO algorithm to estimate the location of the 
unknown node. 

 
5.2.2. The network sizes vs. location errors. Figure 4 
displays that in a fixed area of 50m×50m with 10% of 
the total nodes being the anchors, different network 
sizes (with 40 to 150 nodes) will cast different impacts 
on the number of location errors for the four schemes. 

 
Figure 3. Numbers of RSS samples vs. location 

errors. 
 

 
Figure 4. Network sizes vs. location errors. 

 
As the results clearly exhibit, with fewer anchor nodes 
in the system, the DV-distance Algorithm will produce 
distinctively more errors because an unknown node 
needs to engage in more estimated distance 
measurements to find its location and is therefore more 
vulnerable to error accumulation. On the other hand, 
having 10% of anchor nodes in the system proves 
insufficient for the Ecolocation Algorithm to turn over 
favorable performance, either in a small or large 
network. The Iterative Multilateration generates fewer 
errors than both the DV-distance and Ecolocation 
Algorithms but its average number of errors does not 
shrink explicitly with the growing network size, 
indicating it remains affected by cumulative errors 
when under harsh noisy conditions. Our PSO scheme 
yields the best performance (i.e., the least number of 
errors) among all and the advantage gets even more 
obvious in larger networks thanks again to its adoption 
of the shortest measured distance to estimate the 
locations of unknown nodes, which significantly 
reduces the probability of error accumulation. 

 
5.2.3. The numbers of anchors and location errors. 
Figure 5 demonstrates the fact that different anchor 
ratios will influence the amount of location errors. 
Take the DV-distance Algorithm as an example. When 
the network is with 10% anchor nodes, the DV-
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distance will generate more than 70 errors, but when 
the anchor ratio increases to 20%, its average errors 
decrease to around 30. The decreasing trend goes all 
the way down to about 10 errors at anchor ratio = 70%. 
For the Iterative Multilateration, taking the updated 
anchor nodes as the new anchors will cause problems: 
No matter how many original anchors are deployed in 
the network, a certain number of cumulative errors will 
always appear during the localization process. The 
Ecolocation Algorithm and our PSO scheme both 
display a stable error-decreasing trend over growing 
anchor ratios. Our new scheme performs especially 
well as it manages to produce the lowest number of 
errors at all anchor ratios–even without large numbers 
of original anchor nodes. 

 
Figure 5. Numbers of anchors and location 

errors. 
 
5.2.4. The noise standard deviation and location 
errors. Figure 6 specifies the relationship between 
noise standard deviation and location errors. As 
illustrated, when the noise standard deviation increase, 
both the DV-distance and Ecolocation Algorithms fail 
to cut down location errors – because the former needs 
to accumulate distances while the latter lacks sufficient 
anchor nodes to estimate locations. For the Iterative 
Multilateration and our PSO scheme, the numbers of 
location errors also grow with noise standard deviation 
but in a more moderate trend. In fact, under all levels 
of noise standard deviation, our PSO scheme 
outperforms the others by turning out notably smaller 
amounts of location errors–which comes from its high 
estimation precision (i.e., from using the shortest 
distance measurement which helps cut back error 
accumulation). 
 
5.2.5. The localization success ratios vs. the 
numbers of anchors and location errors. The 
localization success ratio is the number of unknown 
nodes in a network which successfully obtain their 
locations over the total number of sensor nodes. In our 
simulation to examine the relationship among the 
localization success ratios, the numbers of anchor 

 
Figure 6. The relationship between the noise 
standard deviation and location errors. 

 
nodes and location errors, we adopt an 80m× 80m 
wireless sensor area with 10% anchor nodes and a 20m 
maximum transmission range. The other parameters 
follow what is listed in Table 1 and the Ecolocation 
Algorithm is not included for this evaluation because it 
is not feasible for a large network with low anchor 
density. The result in Figure 7 shows that in contrast to 
our PSO scheme and the Iterative Multilateration, the 
DV-distance Algorithm yields distinctively higher 
localization success ratios in all situations (i.e., in 
networks with different numbers of anchors). This is 
because, with only three exchanged location messages 
from the neighboring nodes (each message includes an 
anchor’s coordinate and the accumulated distance), an 
unknown node in the DV-distance will be able to 
calculate its location, thus enabling nearly all 
unknowns to attain their locations.  The high success 
ratios are nevertheless gained at conspicuous cost: The 
number of location errors resulting from the involved 
accumulated distances also rises sharply. The 
localization success ratios of our scheme may not 
appear as high as that of the DV-distance in some 
circumstances because an unknown node in our 
scheme will broadcast the location data of itself and its 
neighbor anchors only once after being updated into an 
anchor node while the DV-distance adopts periodically 
exchanged location messages. The point is, the updated 
anchors in our scheme are employed in an iterative 
way to help unknown nodes obtain their locations with 
more accurate calculations and estimations, 
significantly reducing the number of location errors. In 
fact, when the number of anchors increases, our 
scheme is able to yield as desirable success ratios as 
the DV-distance – with much decreased location 
errors.  

In MODE 2 of our scheme, as mentioned, unknown 
nodes can get enough location messages from anchor 
nodes located several hops away, thus acquiring a 
better chance to find their locations than in the Iterative 
Multilateration. An unknown node nevertheless may 
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Figure 7. Localization success ratios vs. the 
numbers of anchors and location errors. 

 

 
Figure 8. Location error placement in a network 

of 50 nodes (with 8 anchors) under our scheme. 
 

employ the closest neighbor node which is an updated 
anchor to assist with distance measurement and 
position estimation, and thus brings up location errors. 
For better illustration, the placement of location errors 
in a simulated network of 50 nodes (with 8 anchors) is 
plotted in Figure 8. For those unknown nodes with 
more distinct location errors, we are positive that they 
have involved certain updated anchor nodes in their 
location estimation process.  

 
6. Conclusion 
 

This paper presents a PSO-based new node 
localization scheme to reduce error accumulation and 
increase the success ratios in locating unknown nodes 
in WSNs. Our new localization scheme, a modified 
design of the iterative multilateration, determines the 
estimated position of an unknown node using the 
location data of remote anchors provided by the closest 
neighbor anchors of an unknown node to estimate the 
unknown node’s position. To attain more reliable 
estimation accuracy, the new scheme meanwhile 
adopts the PSO algorithm to optimize the calculation 
of node locations and reduce potential accumulative 
errors as well as final location errors. To further 

increase the success ratio of localization, our scheme 
involves an approach similar to the DV-distance to 
help orphan nodes which can not obtain sufficient 
location messages to search and find their locations. 
Experimental evaluation shows that when compared 
with related localization schemes, our PSO-based 
scheme performs constantly better in cutting down the 
number of location errors and increasing the 
localization success ratios – at reduced hardware cost 
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